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1 Introduction

The analysis of the polarization characteristics displayed by optical systems can
~ be- divided' into two categories: geometrical and physical. Geometrical analysis
calculates the change in polarization of a wavefront between pupils in an opti-
cal instrument [1,2,3,4]. Physical analysis propagates the polarized fields wherever
the geometrical analysis is not valid, i.e. near the edges of stops, near images, in
anisotropic media, etc. [1,5,6,7,8]. The changes, geometrical and physical, polariza-
tion causes in the performance of lens and mirror systems are readily calculated by
several commercial computer codes (9,10,11,12]. The inverse problem of designing
a system with specified polarization characteristics is more difficult. Examples in
the literature include a polarization compensated polarizing microscope[13] and a
telescope with ultra-low polarization for a solar polarimeter (14]. Design requires a
fundamental understanding of the origin of polarization aberrations and how they
change with both the optical and coating prescriptions for a system. Polarization
aberration theory provides a starting point for geometrical design and facilitates
subsequent optirnization.

Chipman has derived several polarization aberration expansions similar to the
classical wavefront expansion for rotationally symmetric systems valid fer weak sec-
ond order aberrations [15,16,2]. Reference [17] explores polarization aberrations
graphically using a “symmetrized” second order expansion valid for strong aberra-
tions but does not describe a method to calculate the aberration coefficients. In
this paper, we calculate and discuss an exponential expansion of the polarization
aberrations valid for strong polarization aberrations through fourth order!. The
results are applied to the interpretation of polarization raytracing results.

The polarization aberrations described in this paper arise from differences in the
transmitted (or reflected) amplitudes and phases at interfaces. In contrast, classical
wavefront aberrations arise from differences in optical path length as rays propagate
“between interfaces [18]. Figure 1 shows the calculation of the optical path length
W and the optical path length and the polarization J along a ray. Repetition of
the calculation depicted in Figure 1 (a) for multiple rays and wavelengths samples
the wavefront aberration function. Repetition of the calculation 1 (b) for multiple
rays and wavelengths samples the wavefront aberration function and the polariza-
tion aberration matrix (PAM) of the system. The PAM describes the variation in
polarization with object coordin. pupil coordinates, and wavelength. This paper
calculates the PAM for isotropic rotationally symmetric systems through fourth
order and includes the interface phase, amplitude, linear diattenuation (defined
in Table 1), and linear retardance aberrations. Polarization aberrations resulting
from propagation through anisotropic media such as crystals are not considered in
this paper. For propagation through anisotropic crystals. the propagation terms
exp[jWam] in Figure 1 (b) would be replaced by Jones matrices Jnm-

The order of an aberration term referred to in this paper is the order of the
wavefront representation (n), not the order of the transverse aberrations (n — 1).
Thus, defocus and tilt are second order aberrations, while spherical aberration,
coma, and astigmatism are fourth order aberrations (not third order aberrations).

Section 2 discusses the exponential form of Jones matrices used in this paper.
Section 3 introduces the PAM in Jones matrix form. In Section 4, the exact cal-
culation of polarization aberrations through polarization raytracing is described.
Section 5 presents the coordinate system used in this paper. Section 6 discusses the
paraxial approximation including: thé paraxial PAM for a single surface, paraxial
angle of incidence, and the paraxial orientation of the plane of incidence. In Sec-
tion 7, a Taylor series simplifies coating dependence of the single surface paraxial

1 The preliminary version of this paper used did not use the exponential form which resulted in
increased complexity of computation and interpretation.
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Table 1. Polarization terminology

Term . Definition
Diattenuation The property of having an intensity transmittance
- which is dependent on the incident polarization
state.
Polarization The property of altering the polarization state of

light. Polarization includes the subsets of diattenu-
ation and retardance.

Polarizer An optical element which transmits a fixed polariza-
tion state independent of the incident polarization
state. Examples include dichroic sheets (Polaroid)
and Glan-Thompson prisms.

Polarization element Any optical element showing polarization. Exam-
ples include retarders, polarizers, and metallic in-

terfaces.

Retardance The property of having a phase or optical path
length which is dependent on the incident polariza-
tion state.

Note: There is a distinction between polarizer and polarization element. Chipman
provides a more detailed discussion {2].

PAM. Section 8 calculates the paraxial PAM for a system of isotropic rotationally
symmetric elements through fourth order. A general discussion of the terms is
contained in Section 9. Section 10 contains a detailed discussion of the vector aber-
rations (defined later) comparing and contrasting them with classical scalar phase
aberrations. Section 11 discusses interpretation of polarization raytracing in the

* context of the aberration theory results. Appendix A contiins paraxial expressions
for polarization basis vectors. Appendix B examines the polarization by uncoated
interfaces. Appendix C lists the polarization aberration coefficients for a system of
isotropic rotationally symmetric elements.’ )

2 Jones Matrices

In this section, we present the Jones matrix formalism(12,20] for the analysis of
polarization as used in this paper.

The Jones vector U(t) is
- ()

where U:,(t) and U,(t) ar> the projections of the electromagnetic field on any two
orthogonal basis states ¢ and r. The Jones matrix J relates the incident U and
transmitted fields U’

ﬁl = J[j' . (2)
and is a 2x2 matrix with complex elements
jn e
J = X A . . 7,- :,: .
- ( J21 - J22 ) =™ (3)

3 PRECEDING PAGE BLANK NOT FiLMED



Table 3: Physical significance of the exponential polarization coeflicients

Coeflicient Matrix Physical significance

Go oy R(ag): Polarization independent amplitude
i (ag): Polarization independent phase
ay -8 R(a,): Linear diattenuation along the coordinate
axes
(a;): Linear retardance along the coordinate
axes
az o2 R(a;): Linear diattenuation at 45 degrees to the

coordinate axes
(ay): Linear retardance at 45 degrees to the co-
ordinate axes
a3 o3 R(az): Circular diattenuation
Q(as):  Circular retardance

Fep(h 5y A) = Joys(R, 5, N0np (R, 5,2) (5)

where the Jones matrix is

sz(E, 7\ ( Jays,ll(’iypyf\) jsys,lZ(’ivP;A) )

jcya.ZI(hy ﬁv A) jay:,n(hy ﬁv /\)

= EXP[Gsys,od’o + G5ys,101 + a5y5 202 + a:y:,3a'3] (6)

and K is the object coordinate, § is the pupil coordinate. and A is the wavelength.

It is convenient to separate the Jones matrix for an imaging system into a polar-
ization aberration matrix (PAM) which describes the aberrations and a “quadratic
phase” characteristic of ideal imaging systems

-jkg- 7 .
= )
where J(H,E,)\) is the PAM, f is focal length, and k = 27/A is the wavenumber.
Both the wavefront aberrations and the finite extent of lens are described by the
elements of J (the finite size of the lens is an “aberration” which reduces resolution
from that predicted by geometrical optics.) In the limit of a non-polarizing optical
system, the PAM has the form

Tos (R 5 A) = (RGN exp [

3(,50) = PR 7 exp [j£W(R, 5, 0)] ( - ) 8)

where P(H,i) is the pupil function which describes the amplitude transmittance
of the pupil and W(H,ﬁ',/\) is the wavefront aberration function. In succeeding
sections, quasi-monochromatic light is assumed and the explicit wavelength depen-
dence X is suppressed.

4 Exact Polarization Raytracing

In this section, we describe the procedure for calculating the change in polariza-
tion along a ray through a system of isotropic surfaces.” The technique is called

z

polarization raytracing [23,24]. ..« el SR

R -
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Jo(iq.b,) 3,(i)R(6,)
asq(iq) cos by Gyq(ig)sin 8,

) - ( —apq(ig)sind, apq(iq) cosby )

Equation (19) is exact Jones matrix for an isotropic interface. Isotropic interfaces
do not display circular polarization or circular retardance. If a ray R is incident
on a system of surfaces, the polarization along Ri is found by cascading the effects
from each surface

(19)

1
IR = [ Jalig8) - (20)
=Q

The set of all Jones matrices for a system for each possible ray path R, and
wavelength is the PAM, as described in Section 3. Polarization raytracing codes
[10,11,12] sample the PAM by calculating (20) for selected rays and wavelengths.
Reference [9] uses Mueller matrices to sample polarization aberrations. The rest
of this paper examines a fourth order approximation to the PAM for rotationally
symmetric systems.

5 Global Coordinates

For polarization aberrations expansions, an object and pupil coordinate system is
required. We denote the object height by H and normalize it to one at the edge
of the field of view. The object is located along the global y-axis without loss of
generality because of the rotational symmetry of the system. The entrance pupil
coordinates are denoted by either (z,y,2) ot (p,#,2) in Cartesian and cylindrical
coordinates. In the paraxial approximation the pupils are tlat, so the z dependence
is dropped for convenience in much of this paper. The pupil coordinates z,y, and
p are normalized to one at the edge of the entrance pupil. The polar angle ¢ is
defined so that

r = -—psing (21)
y = pcosd . (22)

Figure 2 illustrates the normalized coordinate system.

6 Paraxial Polarization Aberration Matrices

In this section, we determine the paraxial PAM for a rotationally symmetric sur-
face. Appendix A provides paraxial expressions for the surface normal and local
(R, 5'q, Pq) basis vectors. The single surface Jones matrix of Section 4 is simplified
to first the paraxial Jones matrix and then to the paraxial PAM. The accuracy of
the paraxial approximation for the angle of incidence and orientation of the plane
of incidence are examined.

Consider the polarization of a ray for a system of surfaces. Because the paraxial
fields remain in the x-y plane [see (A-9) and (A-10)], we choose x-y Jones basis
vectors at each surface. Then, the Jones matrix for each surface conmsists of a
rotation into s-p coordinates, the Jones matrix in s-p coordinates, and finally a
rotation back to the x-y coordinates

crooen Pler. T -y
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dependence of the paraxial PAM is suppressed for notational convenience. The
paraxial angle of incidence is obtained by expanding the angle of incidence (17) in
a Taylor series

i(H.p ¢) arcsin‘gql

154‘4-%’54\34----

= \/EQI'Z.; + 2Hpcos ¢ icqimg + PPilng (28)

where the term linear in object and pupil coordinates was retained. The parax-
ial orientation of the angle of incidence (24) in terms of cos [26,(H,p,¢)] and
sin [20,,(H,p,da)] is

Hzifq +2Hpcos @ icgimg + p2i,2nq cos 2¢

cos[20,(H, p,®)] = 3 (29)
7
—2Hpsi i gime — PRis, SN2
sin[26,(H.p.8)] = psing i :;q P tmg ¢ . (30)
q

Equations (28) through (30) define the paraxial system geometry.

Next, consider the accuracy of the paraxial orientation of the plane of incidence
and angle of incidence at a spherical interface. The paraxial orientation of the
plane of incidence assumes that the S'q and f’q basis vectors are in the x-y plane.
A measure of the accuracy of this approximation is the ratio of the intensity of the
field in the x-y plane to the total intensity

2 2

where ¥ is the angle the ray makes with the z-axis. When I, = 1, most of the
light is polarized in the x-y plane and the paraxial approximation is good. When
Iy = 0, most of the light is polarized in either the x-z or y-z planes and the paraxial
approximation is not valid. Now consider the angle of incidence. The surface normal
for a sphere from the definition (A-2) is

. T y 1 \/—zf_T
N=|l-—=—-2,+= (P2 4yl
( R' R’'R Ri—(="+y '.) (32)

where R; is the radius of curvature of the sphere. If the axial plane waves R =
(0,0,1) are incident then

. P
1 = arc¢sin (Rl) ,
3 5
L (e 3(~2
R‘+6(R‘> +40(R:) F— (33)

where p = \/z? + y?. Figure 3 shows a comparison between several approximations
to the angle of incidence for a spherical mirror. The high degree of linearity of
the exact curve, even with angles of incidence as large as 30°, permits the paraxial
approximation to the geometry to be used for many systems.

- N . s o F e S
[ STy R L

Izy(9) =

e T
IR
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7'a2/r0 (39)
ra4/ro - 0.5(1‘02/7'0)2 . (40)

Finally, substituting the Fresnel expansion coefficients into (25) gives the paraxial
PAM expansion

7
Ta2

’
Taq

;2 4
J,(H, p, )= (aonq + @024 3 ) + .. )ao+ ' .
J(H,p, ¢) =exp { (@124 12 + a14q i 4 .. .)(cos 20,0, + sin 26,072) (41)

where i, = i,(H,p, ¢) and §; = 8,(H.p, ¢) are defined in (28) through (30) and the
coating coefficients ag 2¢,¢ and ay 2k ¢ are

ag,2k,q = {r;,zk,q + r;,Zk,q +j(Ys2kq + '/’p,'lk,q)] /2 (42)
a12kq = [r;,Qk,q - ry’p,2k,q + j(¥s,2k,9 — wp.ﬂ:.q)] /2 - (43)
The subscripts of coefficients ag 2k 4 and 4y 2k, 3I€ assigned as follows. The first
subscript assurmes the value 0 for the polarization independent contribution and 1

for the linear polarization along the s-p axis. The second subscript, 2k, is the order
of the coefficient. The last subscript, ¢, designates surface number.

8 Polarization Aberration Matrices for Systems

In this section, we obtain the paraxial PAM for an optical system of isotropic
rotationally symmetric elements through fourth order. Sections 9 and 10 discuss
the system PAM.

To begin, we introduce the Baker-Campbell-Hausdortf (BCH) identity (25

Baker-Campbell-Hausdorff 1 If A and B are matrices, or certain other non-
commuting operators, then

eprexpB=exp[A+B+C2+C3+..'.] (44)

where Cy is a linear combination of k-fold commutators of A and B, in particular

c, = %[A,B] (45)
i = plA[AB]-(BIABI] . (46)

The BCH identity consistently carries out operator products, retaining terms to a
given order.

Now, the PAM of an optical system with Q surfaces is the product of the PAMs
of the individual surfaces

J=Jqu_1-"J2Jx (47)

which simplifies to

J = explagog + a101 + G202 + 23073 (48)

using the paraxial surface PAM (41), the BCH, identity, and the commutation rela-

tions in Table 4. The system PAM cogfficients fo fourth order are
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[ Paooodo + constant piston )

Pogoond’o + quadratic piston
- PoualCOSQSG'o + tilt
P0022p2 o + defocus
Poogopioo + spherical aberration

Poi3t Hp3 cos¢ o + coma
Pogpz H*p? cos 26 oo + astigmatism and field curvature
Py3i  H3pcosd oo + distortion

PoagoHio0 + quartic piston
_ P1200H20'1 +
J(H’p‘(ﬁ)—expﬁ Py Hp(cos¢ oy —sind a3) + ?

Pio22p*(cos 2¢ oy —sin 29 ar) +

Py Hoy +

Pis H3p(2cos ¢ oy —sing o2) +

Piaas H2p? cosd (cos ¢ oy —sing o2) +

PliasHp3 cos¢ ({1 +cos2¢) oy —sin2¢ ol +
Piog2p*(cos 2¢ o) — sin 29 o2) +

Pys Hplsing o3 + circular polarization coma

Py H3psing o3 +  circular polarization distortion
| sixth order terms

(53)
or in Cartesian coordinates
Poogooo + constant piston 1
PoaoH?er0 + quadratic piston
PunHyoo + tilt
Pooaz(z? + y?)oo +  defocus
Pooso(z? + y?)?a0 + spherical ab-rration
Porsy Hy(z? + y?)oo +coma
P0222H2(y2 — )0y + astigmatism and field curvature
Poann H3yoo + distortion i
PoagoHYa0 + quartic pisten
PiaoH?0: +
I(H, z,y) = exp PunH(yoy + zo2) +
Pioaz [((y2 =2 o + 2ryoa] +
PiyoHYoy +
Pian H3(2yey + z02) +
PiagaH?y (yoy + z02) +
PussHy [+ y?* -z} o1 + 2zyo.) +
Proaz [(v* - %) oy + 22y (22 + %) o2 +
Ps131 Hz (2 + y*) o3 ircular polarization coma
Pyan H3zo3 + circular polarization distortion
k sixth order terms )
(54)

where the terms are grouped based on their H, p, ¢ dependencies and Pryyw are
the polarization aberration coefficients. The polarization aberration coefficients are
sums over interface contributions as given in Appendix C and assigned subscripts
using the convention: t denotes the type of polarization behavior(2], u denotes the
order of the H dependence, v denotes the orde;‘ of the p dependence, and w denotes
the order of the ¢ dependerice. ShEe e e -

The fourth order paraxial PAM is paraxial in system geometry and fourth order
in coating response to changes in ¥mgle of incidencé.” A subtle con¥&quence is that
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thin film coatings (particularly those with many layers), they can be significant.
Our equations only calculate the system wavefront aberration contributions arising
from coatings. The geometrical portion of the classical wavefront aberrations (those
arising from optical path length differences) are calculated by the paraxial ray trace
and coniventional aberration calculations (18].

The second class of aberrations contains the amplitude or apodisation aberra-
tions which are characterized by the real parts of the &g coefficients, R(Poyvuz)-
The amplitude aberrations are variations of the amplitude of the electromagnetic
field across the exit pupil which are independent of the incident polarization state.
They do not describe the shape of the transmitted wavefront, only its amplitude.
This apodisation is due to the optical system, not to intensity variations in the
incident light, such as the Gaussian profile of a laser beam. The amplitude aber-
rations describe the average of the coating amplitude transmittance of the s and
p light (the polarization terms describe the difference). Amplitude aberrations are
scalar aberrations and have the same functional dependence on object and pupil
coordinates as the classical wavefront aberrations. Contours of constant apodisa-
tion aberrations through fourth order are shown in Figure 4. Since the functional
form is the same, the generic names of the functions have been retained with the
prefix amplitude added: amplitude tilt, amplitude coma, amplitude spherical aber-
ration, etc. For example, the term SR(Pgo.m)p4 is amplitude spherical aberration.
If R(Pooqo) is negative the center of the pupil is brighter and the pupil becomes
dimmer quartically with pupil radius. For R(Pouvwz) positive, the pupil is brighter
at the edge. The interpretation of all of the amplitude aberration follows in the
same manner as amplitude spherical aberration. Intentional apodisation (versus
apodisation aberrations) is discussed in Reference [26].

The third and fourth classes of aberrations contain linear diattenuation and lin-
ear retardance aberrations and are characterized by the ral and imaginary parts
of the coefficients of o, and a2 respectively. These two ~lasses of aberrations are
characterized by the real and imaginary parts of the cortficients of @y and o re-
spectively. These two classes of aberration will be treated together under the name
vector aberrations. Vector aberrations are conceptually different from the scalar
aberrations since both a magnitude and orientation must be specified. The parax-
ial vector aberration patterns through fourth order are illustrated in Figure 5. The
length of the lines denotes the strength of the linear polariz ation element. The ori-
entation of the line denotes the orientation of the linear polarization element. The
patterns are the same for both linear diattenuation and linear retardance aberrations
since both are vector aberrations. A detailed discussion of the vector aberrations is
found in the next section.

The effect of the vector polarization aberrations on polarized incident light is
the same as a linear polarization element with spatially varying strength and ori-
entation. Figures 6 and 7 show the effect of the three second order aberrations on
linearly polarized light. The magnitudes of the aberrations depicted are not typi-
cal, but have been chosen to clearly display the effect of the aberrations. Figures
8 and 9 depict the effect of the three second order aberrations on circularly polar-
ized light. The type and orientation of ellipse indicates the type and orientation of
the polarization state. The position and direction of the arrow denotes phase and
handedness of the polarization state.

The last class of aberrations contain the circular aberrations. Figure 4 shows con-
tours of constant circular aberrations through fourth order. The real and imaginary
parts of the coefficient of o3 correspond to the circular diattenuation and circular
retardance aberrations respectively. The circular aberrations are variations of the
circular diattenuation and circular retardance across the exit pupil. The imaginary
part of the term P3j3; [Pa311] produces a wavefront with J(Pa3;1) coma [S(Paa11)
distortion] when right circularly polarized: light, is incjdent and —J(Paz) coma
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Figure 5: Paraxial vector polarization aberration patterns through fourth order
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Linearly polarized light incident Piooz = j7/2
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P = j7/2 Piage = j7/2
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Figure 7: Effect of linear retardance aberrations on linearly polarized light. Part
(a) shows uniform linearly polarized light in the entrance pupil. Parts (b), (¢),
and (d) show the polarization state across the exit pupil if the system has only the

aberration Piozz = J7/2, Puu = jm/2, and Piaoo = ix/2.
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Circularly polarized light incident
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Py = jm/2
(¢)

Piago = jm/2
{d)

Figure 9: Effect of linear retardance aberrations on circularly polarized light. Part
(a) shows uniform circularly polarized light in the entrance pupil. Parts (b), (¢),

and (d) show the polarization state across

the exit pupil if the system has only the

aberration Pjozz = j7/2, Piiin = j7/2, and Pize0 = j7/2.
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H=0 H=H, H=2H,

Figure 10: Paraxial angle of incidence at a spherical surface for three field an-
gles. The length of the lines denotes the magnitude of the angle of incidence. The
orientation of the lines denotes the orientation of the plane of incidence.

N\ ~—7 N\ -/ N "/
~_ -~ ~
Piox Pioaz P 062

’ Figure 11: The first three principal vector aberration patterns for isotropic rota-
tionally symmetric interfaces. The Pioz2 pattern varies quadraticaily with radius.
The Pigs2 pattern varies quartically with radius. Finally, the Pjos2 pattern varies
with radius to the sixth power. )

moves off-axis. The non-principal vector aberration patterns add to the principal
pattern to give a decentered view of the principal patterns. The aberrations change
as the paraxial angle of incidence function changes for off-axis object points. In fact,
the set of nth order vector aberration patterns is complete when the nth order prin-
cipal pattern can be decentered with a linear combination of the nth order patterns.
Again, these principal patterns are analogous to spherical aberration. In classical
aberration theory when the object is on-axis, a rotationally symmetric interface
only has spherical aberration (but many different orders of spherical aberration).
As the object moves off-axis, the other aberrations are introduced.

The completeness of the set of second order vector aberration patterns can be
addressed by constructing a shifted second order principal pattern from a linear
combination of the second order vector aberrations. Figure 13 shows the second
order patterns Pioz2, Pi200, and Py;1; adding to give a decentered view of the prin-
cipal pattern. Figure 13 (a) shows the superposition of the P30 and Pigq7 patterns.
The vector aberration patterns (arrays of weak linear diattenuators and/or arrays
of weak linear retarders) add as PAMs, not as vectors! }T‘v‘vo orthogonal weak linear
diattenuators of the same magnitude “add ta zero diatténuation, and reduced ampli-
tude (transmission). Two orthogonal weak linear retardets with equal retardance
add to zeto net retardance. Figure 13 (b) shows the result of adding P30 and
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Figure 13: Addition of second order aberration patterns to give a decentered view
of the second order principal aberration pattern
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Table 6: Symmetry of pupil aberration sections of rotationally symmetric systems

On Axis Objects Off Axis Objects
Tangential Sagittal
Aberration type Linear Linear Elliptical
Aberration orientation Radial or Horizontal or  Arbitrary
tangential vertical
Symmetry Rotational None 0Odd about
the y-axis

Note: An aberration has odd symmetry if the pattern is mirror symmetric about
some line.

Tangential Sagittal
~ TN — T~
/7 N\ /7 N\
/ ’I-\\ \ / ’a"s\ \
’ \ ’ \
- S 1
Y | b o
\ \\-" / \ \\_—’ /
N\ N 7/ N\ /
~ ~ _ -
(a) \b)
[ I B B [ T |
(e) (d)

Figure 15: Example pupil aberration section for on axis object. Exit pupil aber-
ration maps with the tangential and sagittal sections highlighted are shown in (a)
and (b), respectively. The tangential and sagittal sections are shown in (c¢) and (d),
respectively. The sagittal section is rotated 90 degrees for a more compact display.
The aberration is Pio22 — Pioa2 + P3a11-

‘ag
-
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Field height Tangential section Sagittal section
met L LTI -
[ 1
| v

|||| I-———-I
.

H=0.7

H=0

Figure 17: Tangential and sagittal pupil aberrations plot for a system with nth
order principal aberrations and piston

can be either diattenuating or retarding giving polarization dependent apodisation
or phase, respectively. The circular aberrations described the circular retardance
and circular diattenuation introduced by an optical system. For systems of isotropic
rotationally symmetric surfaces, the circular aberrations appeared first at fourth
order. Vector aberrations were conceptually different from classical aberrations.
. They described the linear retardance and linear diattenuation variation introduced
by an optical system. These polarization aberrations were decomposed into a set
of vector patterns which were each attached a weight or an aberration coefficient.
The theory described in this paper applies to many optical systems built today.
Thin films have a much deeper role in optical system design than merely changing
the transmittance of a system. Thin films induce polarization aberrations or, if the
designer is clever, control the polarization aberrations. This extension of aberration
theory was made possible by including a Taylor series »xpansion of the Fresnel
coefficients for each interface in the optical system. The resulting aberration theory
allows the integration of thin film design and optical design for polarization critical
optics.
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A Paraxial Basis Vectors and Fields

In this appendix, we derive the paraxial quantities necessary for the paraxial PAM
in Section 6. First, g Vgra_lt-e)ggrg_sgjppa ~f9;,,the surface ngrmal and local basis vectors

are presented. Next, the paraxial approximation i§ applied to-these quantities. The
paraxial field is shown to lie in the x-y plane.
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where

. _Yeq _ TgSiDUc ]

- teq R, Ree (A-11)
. Ymaq T
io= dmeg g A-12
mq Rq + Riq ( )

and i,y and im, are the angle of incidences for the chief and marginal rays respec-
tively. This follows directly from linear nature of the paraxial raytrace [16]. The
paraxial system geometry is entirely contained in 7, and im. It is not necessary to
work with the radii of the individual lenses, entrance pupils, etc. The asphericity
and wavefront aberrations have a third order effect on the surface normal and local
(Rq, 54, P;) basis vectors. Both S, and P, are in the x-y plane. There is no z
component of the electric field.

B Polarization at Uncoated Interfaces

This appendix examines the polarization on reflection and transmission from an
uncoated interface. We determine the interface coefficients of Chapier 7 with a
Taylor series expansion of the Fresnel coefficients. The accuracy is discussed for
reflection by gold at A = 10.6 ym.

The Fresnel coefficients expanded in the angle of incidence are

sin(i — i)

sin(i + #)

. N-1 1, NI-6N-3,

= ;v+1<1'ﬁ‘ t TN +> (B-1)
tan(i — i)

tan(i + ')

N - 5N2 ~
- : L (1+ Li2+ D—.Mi4+...> . (B_Q)

rs =

Tp =

N+l N 12N3
2cosisin(i)

sin(i + ')

2N N-1, 3N3+3N?-TN+1.
ﬁ(l L & ,4+...)
sin(i — #')
sin(i + /)

2N [1 N(N - 1)1'2 + N(N = 1)(9N? - 6N +5) A
N+ 2 24

(B-3)

+o ] (B-4)

where r, and 7, are reflection coefficients, t, and t, are reflection coefficients, t is the
angle of incidence in radians, the ' denotes quantities after the interface, N =n'/n
is the ratio of the refractive indices, and Snell’s law

nsini = n’sind’ (B-15)
was used [16,15]. The interface ‘coefficients (B-1) and (B-?)jx_lﬁe}xponential form are

. Tt e
-3

explro + rai® + -+ (B-6)

ry(i) =
rp(i) = explro—rai’ 41 (B-7)
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Figure 18: The amplitude reflectance (a) and phase change’(b) on reflection from
a gold coating at 10.6 um. Curves are shown for both the s and p components of

the incident light. Valu s were computed using a refractive index, n = 3.8 — 64;.
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Q
Podo = D_Goagimg - (C9)
¢=1

’ Q

=Piyo0 = Zanqifq (C-10)
q=1
Q

Pllll = 2Zal2qicqimq (C-ll)
g=1
Q

P22 = Zalzqi;)nq (C-12)
q=1
Q

P = 2014#34 (C-13)
q=1
Q

Pian = 22‘114q1cqimq (C-14)
q=1
Q

P2 = 3Zal4qi3qi3nq (C-15)
q=1
Q

Pypaz = 2 quicqi?-nq (C'ls)
q=1
Q

Piosz = Q1agimg (C-17)
=1
Q g-1 g-1

Py = jZ(al2qiy2nqzal2picpimp"al2qir{‘-"qzal2pi3np> (C'IS)
q=1 p=1 p=1
Q q-1 -1

Pyzz1 = jz<a12qicqiqua12pi3p—012qizqzal'2picpimp) (C‘lg)
g=1 p=1 p=1
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Polarization aberrations. II. Tilted and decentered
optical systems

James P. MCGuire Jr.
Russell A. Chipman

May 21, 1990



Many optical systems built have tilted or decentered elements. These include
unobscured systems and systems with fold flats. Because of typically larger angles
of incidence, polarization aberrations can be significant in these systems. Two types
of tilted and decentered systems composed of rotationally symmetric elements are
examined. One is systems with collinear centers of curvatures but with decentered
pupils. Symmetry in such systems allows the analysis to proceed along lines very
similar to those in Paper I. The other is systems with arbitrary tilts and decenters.
In these systems, the field dependences of the aberrations from each surface are not
concentric. The extension is made by using a polarization aberration matrix with
vector, instead of scalar, arguments.

The extension to tilted and decentered systems used in this paper is based on

the principle that each surface has an axis of symmetry; and these aberrations
can be found in the conventional fashion. Buchroeder used this principle to design
systems composed of tilted and decentered elements {1]. Thompson used vector
algebra to combine the aberration contributions from tilted and decentered elements
[2]. Rogers extended the vector techniques to explore anamorphic and keystone
distortion due to the tilt of the object relative to the elements in the optical system
(3].
Section 1 briefly introduces the basis of aberration theory for tilted and decen-
tered systems. Section 2 outlines the coordinate system and some vector operations.
In Section 3 we present the PAM with vector arguments which is the basis of the
calculations in this paper. Section 4 examines systems with decentered pupils. Ex-
ample calculations for an infrared LIDAR beam expander are given in Section 3.
Section 6 explores aberrations in systems with arbitrary tilts and decenters. The
second order PAM of Section 3 is manipulated into a form convenient for summing a
system of tilted and decentered elements. The accuracy of this method is discussed.
A simple IR scan mirror assembly is analyzed in Section 7 References to equations
and sections in Paper [ are preceded L

1 Overview

Each spherical surface and its entrance pupil form a rotationally symmetric system.
Thus, each optical surface introduces aberrations of the same form, whether used
in a rotationally symmetric or unsymmetric system. The cznters of the aberration
contributions of each surface are displaced due to the tilt. Figure 1 shows a spherical
surface, pupil, and object. The axis of symmetry is called the local aris and connects
the center of the pupil and the center of curvature for the surface. The central ray
is defined by the center of the object and the center of the pupil for the surface.
Both the object field and the pupils for each surface are fournd by imaging the object
and the entrance pupil through each of the surfaces prior to the surface in question.
In rotationally symmetric systems, the local axis and the :entral ray coincide. In
systems with decentered pupils, the vector aberration expansion is made about the
line connecting the centers of curvatures of the elements. In arbitrarily tilted and
decentered systems, the vector aberration expansion for tilted optical systems is
made about the local axis of each element.

When the center of the pupil coincides, or nearly coincides, with the center of
curvature of the mirror (i.e. in a Schmidt system), the local axis is either ill-defined
or so oblique that aberration expansions about it are impractical. In these cases,
the expansion should be made about the line oupecting the object and the center

il

of curvature. The optical systém {§ rotationally Symmetric about this line with the
pupil decentered and tilted instead of the object.
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;

(p,8)
pzT + py¥ (3)

where p and ¢ are the polar pupil coordinates. The pupil vector is normalized so
that p = 1 at the edge of a circular pupil.

Vector multiplication introduced by Thompson (2] is analogous to complex num-
ber multiplication

Hi=(Hp. 0 +¢) (4)
and gives a vector result. The square root of a vector

\/E'-=<\/_ﬁ,%> or (\/7{_,%+1r) (5)

is a vector and follows directly from the definition of vector multiplication. The dot
product

H. 5 = Hzpz+ Hypy
= Hpcos¢ (6)

gives a scalar result. The following vector identities

2(5-5) (A‘Z-C'Z) = A (4B -éz)+(.ﬂ8‘62) Q)
z(i-é)(i-é) = (A’ Bé)+A9{§ (':') (8)
2(5-15?) (jé.c‘?)' = A (B2 52)+B‘(I2-52) (9)

are useful in the manipulation of vector aberrations. All are easily verified by
converting to trigonometric form.

3 Polarization Aberration Matrices with Vector
Arguments

In this section, we discuss PAMs for a single surface with vector arguments. The
PAM with scalar arguments is rewritten first for arbitrary object orientations and
then with vector notation.

First consider the second order terms in the PAM derived in Section 1.9

( Poooooo + constant piston
PaaooH?o0 + quadratic piston
PoanpCOS¢Uo + tilt
J(H,p,¢) = exp Pao20p* 00 + defocus k . (10)

PiaoH?oy + ] B
PUH,HP_‘((“:_Of:Q:a"l = S‘an(?\a'ﬂ L

UEREEE § Pro2ap® (cos2¢ a1 — sin 2¢.02)

7/

Equation (10) describes the aberrations for objects of height H located along the y-
axis. The pupil dependence is described by polar coordinates (p, ) with ¢ measured
from the object (which lies on the y-axis). If the object is located @ from the y-axis,
then the PAM is
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Figure 3: IR LIDAR off-axis beam expander (a) and the equivalent rotationally
symmetric system (b). In systems with decentered pupils such as (a), the aber-
rations are easily calculated by analyzing the equivalent -otationally symmetric
system (b) and then decentering the pupil.
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Table 1: Optical design of the LIDAR off-axis beam expander and the associated
chief and marginal angles of incidence

Overall
F-number 1
Expansion ratio 16:1
Field of view 50 prad
Diameter 110 cm
Coatings Gold
Wavelength 10.6 pm
Parabolic primary
Focal length 110 cm
Diameter 110 ecm
OF axis section diameter 30 cm
Beam displacement from optical axis 50 cm

Parabolic secondary

Focal length 6.875 cm
Diameter 7.5 cm
Beamn displacement from optical axis 2.5 em
Paraxial angles of incidence
Chief
At primary mirror (ic1) —50 urad
At fold mirror (i.2) 50 purad
At secondary mirror (i.3) 424 prad
Marginal -
At primary mirror (im1) 750 mrad
At fold mirror (im2) —300 mrad
At secondary mirror (im3) 72.7 mrad

Table 2: Aberration coefficients for the LIDAR beam expander

Pooou = —0.012 - 0092]

Poago =0
Py =0
Pog2o =0

- Pigge=33x 10“°+28x 10-° ;
. ) Pmn--;--.—]. 8 x 10_ "“1 4x10°°
T Py = 0.002 +0.013;
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(3=, Poooogoo + constant piston )
2, Pozoog H-hy)- (ﬁ - Eq) oo + quadratic piston
3¢ Poitg a- };q; poo+ tilt
J (ﬁ,ﬁ) = exp 7 > Poozoqﬁ'fa'a'.-i— . defocus L
g Procog (H —hq) - A+
qullllq ﬁ—flq 5-;{-1—
¥, Prozgd A )
(1)
which may be rewritten
Pia00 (ﬁ - 51200)2 - gfggg] A+
I (ﬁ’ﬁ) =Py Py (A - 51111) F-A+ (16)

Ponf?-A

where the polarization independent aberrations Poyyw were dropped and the aber-
ration coefficients are

Piage = Z Pi2004 (17)
q

dia00 = plioo przooqﬁq (18)

¢
b0 = diao0 — }’:11?,; Z Pnool,v’;? (19)
q

Pir = Z Py (20)
q

duyu = Fi’:;PllllqEq (21)

P2 = mezzq . (22)
q

Equation (16) describes the polarization dependent aberrations through second or-
der for systems of tilted and decentered elements. The interpretation of each aber-
ration is discussed below.

The first aberration to consider is polarization defocus

Pios2f?-A . (23)

Since each contribution to the defocus terms is independent of H and therefore A,
the aberration is independent of the tilts or decenters of the elements.
The next term to consider is polarization talt

A (A= T) P A

oI5 (24)

‘;“I“as_" LI $ 3L
which shows the aberration resulting from a sum of tilts is of the same form as
a single surface tilt. Figure 6 shows the pupil aberration for the tilt aberration
in (a) rotationally symmetric system and (b) tilted and decentered system. The

aberration is centered in the field at @yy11- The strength of the aberration is given
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(b)

berration map for the tilt aberration. Examples for (a) ro-
tationally symmetric systems and (b) tilted or decentered systems are shown. The
object vectors are superimposed over the pupil to show the effect of the tilts and
decenters on the oriencation of the aberration pattern.

Figure 6: The pupil a
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(b)

Figure 8: The gupil.aberration map

5 w215 B
for quadratic Piston aberration. Examples for

(a) rotationally'gymmetric systems and (b) tilted or decentered systems are shown.
The object vectors are superimposed over the pupil to show the effect of the tilts
and decenters on the orientation of the aberration pattern.

13
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Figure 10: Infrared scan mirror system pointed at (a) 22.5°, (b) 45°, and (c) 67.5°.

The fixed pupil of the optical system is shown.
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Polarization Analysis of LIDARs

Dr. James P. M€Guire, Jr. Dr. Russell A. Chipman
Physics Department
University of Alabama in Huntsville
Huntsville, Alabama 35899

June 8, 1990

1 Introduction

The objective of LIDAR systems is to accurately measure atmospheric winds. The
measurement proceeds as follows. A circularly polarized beam is sent by the LIDAR
into the atmosphere. Particulates backscatter some of the light back into the LIDAR
and change the handedness of the circularly polarized light. The return signal is
combined with the local oscillator at the heterodyne receiver using a polarizing
beamsplitter. Doppler shifts and trip time of the return beam provide velocity and
ranging information.

Any difference in the polarization state of the return beam from the expected
circular polarization state, decreases the fraction of the return signal combined
with the local oscillator. Thus changes in polarization due to the optics before the
beamsplitter, reduce signal and instrumental accuracy. This loss of signal due to
instrumental polarization can be minimized during the design phase, if polarization
is understood.

All of the mirrors in LIDAR systems change the polarization state of the light
because the rays strike at non-normal incidence. The polarization change depends
on field position, object position, and incident polarization state. Polarization aber-
rations couple some portion of the incident polarization state into the orthogonal po-
larization state. Polarization analysis of optical systems is reviewed by Chipman([1].

2 Results

Significant contributions in two areas of polarization analysis were made: aberration
theory and polarization raytracing. The results are described in two papers which
were completed with funding from this contract[2,3] and have been submitted to
Optical Engineering for publication. These papers are the final report for this
contract. This contract also provided partial support for the completion of Dr.
MCGuire’s dissertation [4]. Some important aspects of this research are highlighted
below.

Polarization aberration theory describes the low order polarization in an optical
system with a Taylor series approximation. This approximation is particularly good
in reflective IR systems because of the high indices of IR materials. Section I3
uses polarization aberration theory to analyze a NASA IR LIDAR beam-expander.
Polarization aberrations were found to couple less than 1.0% of the light into the
orthogonal polarization state.

Polarization raytracing is the analogue of conventional raytracing with the po-
larization modifying properties of the system calculated instead of optical path
differences. Current commercial polarization raytracing codes [5,6] are good at cal-
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culating the polarization of an optical system. However the results are not presented
in a form which leads to a thorough understanding of the polarization aberrations
in a system. Section [.8 discusses several alternative methods of display which
would make the design of LIDAR or any polarization critical system far easier. Dis-
cussions about incorporatating these new techniques have been initiated with lens
design software developers. Improved polarization analysis software should result.
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